Supplementary MaterialsS1 Fig: p53 impact on Glucose metabolism

Supplementary MaterialsS1 Fig: p53 impact on Glucose metabolism. cells consisting of less than 2n DNA. All assessments were conducted in three impartial replicates.(TIF) pone.0182789.s002.tif (4.4M) GUID:?28E26C05-D36F-45BA-AC64-A7682B9B9793 S3 Fig: Relative transcript (A) and protein (B) quantification normalized by the expression of the house keeping genes, GAPDH and -actin using MyImage AnalysisTM Rabbit polyclonal to AHCYL1 Software (Thermo Scientific) from one impartial experiment in RMG-1 ovarian cancer cell line, A549 lung cancer cell line, MDA-MB 231 breast cancer cell line, MRC5 a non-tumorigenic cell line and MRC5 cells upon recovery from numerous treatments.(TIF) pone.0182789.s003.tif (3.3M) GUID:?8A3800DE-C9B5-4371-BF04-073404516B88 S4 Fig: Pathway analysis using REACTOME. Pathway diagrams were constructed using the REACTOME pathway analysis software. Pathway diagrams are a representation of actions Picrotoxin or processes of pathways with interconnected molecular events. Unique genes with altered expression patterns between A549 and MRC-5 cells were submitted as the query list onto the REACTOME web portal. Pathways were enriched when a significant number of the query list genes were part of a particular pathway against the overall pathway genes. Each pathway was considered statistically enriched when the p 0.05. The dark green colour represents genes with upregulated expression levels while the bright yellow colour represents downregulated genes in a step or process. In A549 lung malignancy cells, the combined treatment upregulated genes involved in (A); regulation of necrosis (p = 0.56E-5), intrinsic programmed cell death (p = 2.22E-2), packaging of telomere ends (p = 1.9E-2), dual inclusion GC:NER (p = 2 E-3), recruitment of POLB to AP site: abasic sugar-phosphate removal (p = 1.44E-2), cellular response to hypoxia (p = 1.19E-1), signaling by VEGF (p = 6.26E-1), and telomere stress induced senescence (p = 4.46E-2). Furthermore, in A549 lung malignancy cells, the combined treatment downregulated Picrotoxin genes involved in (B); DNA strand elongation: unwinding of DNA (p = 7.53E-6), activation of pre-replicative complex (p = 6.66E-5), mitotic G0/G1/S phase (p = 6.21E-4), signaling by VEGF (p = 3.31E-1), cellular response to oxidative stress (p = 5.86E-4), detoxification of ROS (p = 1.44E-3), and metabolic genes regulated by TP53 (p = 2.35E-2). In MRC-5 normal lung fibroblast cells, the combined treatment upregulated genes involved in (C); signaling by VEGF (p = 3.02E-4), Tie2 signaling (p = 3.38E-2), regulation and transport of IGF by IGFBP5 (p = 3.61E-2), Dissolution of fibrin clot (fibrinolysis) (p = 3.42E-2),cellular response to hypoxia (p = 1.32E-2), POU5F1 (OCT4), S0x2, NANOG repress genes related to differentiation (p = 1.72E-2), and heme degradation (p = 2.02E-2). The REACTOME important diagram below gives detail description of the icons used.(TIF) pone.0182789.s004.tif (4.0M) GUID:?575CEE46-6369-4356-9F4E-5A96C4C1BB72 S1 Table: Primer units of each gene to be amplified. (PDF) pone.0182789.s005.pdf (165K) GUID:?0605F16D-3690-41EA-8520-B9D8CDE5FB52 S2 Table: Detailed statistical data. (PDF) pone.0182789.s006.pdf (99K) GUID:?E57338E3-C305-4162-80BB-FF388AE6483B S3 Picrotoxin Table: Information of differentially expressed genes. (A) 13 upregulated MRC-5 genes (B) 17 upregulated A549 genes (C) 18 upregulated A549 genes.(PDF) pone.0182789.s007.pdf (353K) GUID:?3276F509-8AFE-4AC1-ADCB-67A2DA49DBA9 Data Availability StatementAll relevant data are within the paper and its Supporting Information files. Abstract The Warburg Effect, characterized by increased rate of glycolysis even under normoxic conditions, is one of the hallmarks of malignancy. Relatively lesser oxidative phosphorylation (OXPHOS) is also a characteristic feature in malignancy cells. We hypothesized that interference with this phenomenon, by introducing exogenous pyruvate, would upset this malignancy phenotype and boost the energy requirements of normal cells. We find that methyl pyruvate protects irinotecan-treated normal lung fibroblast cell collection (MRC-5) probably by turning off the p53/p21 axis of the apoptotic pathways. When the MRC-5 fibroblasts recover in drug-free Picrotoxin medium, the intrinsic apoptotic pathway is also turned off and the cells survive with no discernible exponential growth during the observation period. In contrast, the mere introduction of exogenous pyruvate kills the lung malignancy cell collection (A549). Although, functional p53 is important in the drug-induced malignancy cell death, it is probably not essential because malignancy cell lines with mutated p53 also pass away albeit less efficiently. We conclude that methyl pyruvate may preferentially kill malignancy cells and safeguard normal cells during chemotherapy. Introduction Metabolic reprogramming, also known as.